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We consider Chebyshev type quadrature formulas on an interval, i.e., quadrature
formulas where all nodes are weighted equally. Using a topological method, we give
an upper bound for the minimum number of nodes needed in order to achieve a
certain degree of precision. We also consider the corresponding problem on the
d-dimensional sphere Sd. © 1991 Academic Press, Inc.

1. INTRODUCTION

In this paper we are concerned with Chebyshev type quadrature
formulas on a finite interval I = [a, h], i.e., quadrature formulas where all
nodes are weighted equally:

Here J.l is a suitable measure (as detailed in Sec. 2) and the nodes Xi are
required to lie in the intervall. We call the set of nodes a J.l-averaging set
of degree p if the formula is exact for all polynomials of degree up to p.
(See [7] for a survey article on such quadrature formulas.)

Several authors have found upper bounds for the degree of precision p
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of such a formula when the number of nodes n is fixed; equivalently, if the
degree of precision is fixed, they obtain a lower bound for the number of
nodes. Bernstein [3] showed n> (1/16) p2 for the Lebesgue measure. Later
authors [8, 5] have considered the case of Jacobi weight functions.

The problem we want to address is to find an upper bound for the mini­
mum number of nodes needed in order to achieve a certain degree of preci­
sion. Using a topological method, which was inspired by [1], we develop
in Section 2 a general formula for such an upper bound (Theorem 2.1). We
actually treat the more general situation of ,u-averaging sets for an arbitrary
finite dimensional vector space of continuous functions, not necessarily
polynomials.

This is specialized in Section 3 to the case of polynomials integrated with
respect to a Jacobi weight function. The upper bound we are able to com­
pute (Theorem 3.1) differs from the lower bound in [5] only by a factor p.
For example, in the case of the Lebesgue measure, we obtain N(p) = O(p3)
for the minimum size N(p) of a ,u-averaging set of degree p. (It is probable
that the lower bound of Bernstein is closer to the truth.)

Finally, in Section 4 we consider averaging sets on the d-dimensional
sphere Sd= {(xo, ..., x d) I x6+ ... +x~= I} in R d+ 1

• (See the book of
Stroud [11] for specific examples.) Combinatorists have developed a more
recent interest in these averaging sets, which they call spherical designs
(see [6]).

By the very simple observation that for integration purposes the sphere
is equivalent to a product of intervals with suitable ultraspherical weight
functions, we can construct (Theorem 4.3) spherical averaging sets as
"products" of interval averaging sets. Letting NAp) denote the minimum
size of an averaging set of degree p on Sd, we get the estimate
(Theorem 4.1)

(1.1)

We can actually show the existence of a spherical averaging set of size n
and degree p for every n ';3 firAp), where fird(P) has the same order of
magnitude as (1.1). For the sphere S2, this improves and simplifies
previous results of one of the authors [2]. We should emphasize that
our methods are elementary and do not require knowledge of spherical
harmonics on Sd.

2. THE MAIN RESULT

Let ,u be a Borel measure on the finite interval 1= [a, b] which satisfies
the following two properties:
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(i) ,u( {x }) = 0 for every x E /;

(ii) ,u(J) > 0 for every subinterval J of I of positive length.

Condition (ii) ensures that the formula

(f, g) H f fg d,u
I
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(2.1 )

(2.2)

defines a positive definite inner product on the space of real-valued con­
tinuous functions on /. Condition (i) is used in the proof of Theorem 2.1
below. The important case for the applications is d,u(x) = w(x) dx for some
Lebesgue integrable weight function w(x) taking positive values a.e.

Let V be a finite dimensional vector space of real-valued continuous
functions on /. We are interested in Chebyshev type quadrature formulas
exact for all functions in V. In other words we consider ,u-averaging sets for
functions in V, i.e., sets of distinct points {x l' ..., xn } £ / such that

1 1 n

-(I) f f d,u = - L f(x;)
,u I ni~l

(2.3 )

for all f E V.
In Theorem 2.1 below, we give an upper bound for the minimum size of

such an averaging set. We actually exhibit a number No such that for every
integer n > No there exists a ,u-averaging set for V of size n, (The existence
of such a number No has been proved under much more general
circumstances by Seymour and Zaslavsky [9J, but their method does
not yield explicit estimates.)

Before stating our main result, let us make a few simplifying assump­
tions. By the linearity of the problem, it is enough to check (2.3) for
functions fl' ..., fm forming a basis for V. This in turn is equivalent to the
single vector-valued equation

1 1 n-f fd,u=- L f(x;),
,uU) I ni~l

(2.4 )

where f = (fl' ..., fm)' Also, since (2.3) always holds for constant functions
f independently of the choice of the nodes Xi' we may subtract from each
function f E V its ,u-average

- 1 ff=- fd,u
,uU) I

and make the following assumption: any function in V has ,u-average zero.
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The problem is then reduced to finding a set of points Xi E I such that

n

I f(xJ=O.
i=1

We will use the following general notation. The Euclidean inner product
and Euclidean norm in Rm will be written <u, v) and Ilvll. For (con­
tinuous) functions f: I ~ Rand f: I ~ Rm, we write

Ilflloo = max If(x)1
XEI

and Ilfll oo = max Ilf(x)ll.
XEI

The length of an interval J is denoted by IJI.

THEOREM 2.1. Let f= (fl' ...,fm) be a Lipschitz function from I to Rm
with Lipschitz constant

{
llf(X)-f(Y)111 }L = sup X, Y E I, x#- Y ,

Ix-yl

having fl-average f =0, and such that the components II' ..., fm are linearly
independent. Let A be the smallest eigenvalue of the (positive definite) Gram
matrix

(2.5)

Then for every integer n > No with

III flU) Ilfll 00 L
No= 2..1.

there is a set of n distinct points {x I, ..., x n } S I such that

n

I f(xJ=O.
i~ I

Proof Let Bm and sm - I denote, respectively, the unit ball and the unit
sphere in Rm. Fix 11 > 1. For each u E Bm, define the continuous function
hu :I~R by

Note that
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(because f = 0), and by the Cauchy-Schwarz inequality
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Now fix a positive integer n (to be determined later) and define, for each
uEBm

, an increasing sequence Xi=Xi(U) (i= 1, ..., n) of points in I
as follows. Decompose I into a union of n nonoverlapping intervals
I = II U ... U In such that, for each i,

(2.6)

and let Xi be the midpoint of Ii. Since hu is bounded away from zero, condi­
tions (2.1) on J1. ensure that the intervals Ii are uniquely determined and
that xi(u) varies continuously with u.

Define the continuous map cP: Bm
--7 Rm by

We will show that, for n large enough, cP(u) = 0 for some u E Bm. The
corresponding sequence xI(u), ..., xn(u) is then an averaging set for f.

To establish our claim, we introduce the linear map cP l fromRm to itself
defined by

(the second equality holds because £=0), and write CfJI=if>llsm~l. The
(i, j)-entry of the matrix representing if> I with respect to the standard basis
{e l , ..• , em} of Rm is

i.e., the (i, j)-entry of the Gram matrix (2.5). Since this matrix is non­
singular, CfJI is homotopically nontrivial as a map into Rm\ {OJ. Moreover,

min 11<pI(U)11 = A.
Hull ~ I

Writing <P = cP Ism~l, we show that, for n large enough,

(2.7)

for all U E sm~ I, (2.8 )

which implies that <p has no zero, <p is homotopic to <P I as a map into
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Rm\{O} (move qJ(u) towards qJl(U) along the straight segment joining the
two points), and hence qJ is homotopically nontrivial as a map into
Rm\{O}. This implies that ifJ has a zero in Em (otherwise the map
qJ: sm - 1~ R\ {O} would factor through the contractible space Em and
hence would be homotopically trivial).

We have

qJ(U) = ±f hu(x) f(x;) dfl(x)
i=l Ii

by (2.6), and

qJl(U)= ±f hu(x)f(x)dfl(X).
i= 1 Ii

Moreover, if x E I;, then

Therefore,

IlqJ(u)-qJl(u)11 ~ ±I hJx) Ilf(x;)-f(x)11 dfl(X)
i= 1 Ii

I n

~2L L 11;1 f hudfl
i= 1 Ii

= ~ L t1flU) IIfll oo ±11;1
2 n ;~1

tI IIi fl(I) Ilfll 00 L
2n

By (2.7), (2.8) will hold as soon as

tI IIi flU) IIfll 00 L 1

2n <A.

Since t1> 1 is arbitrary, we deduce the existence of a fl-averaging set for f
with n points whenever

III flU) 1111100 L I
n> 2A .

Let us write No = No(f) to show the dependence on f. Notice that No(f)
is unchanged if fl is multiplied by a positive constant, or if each /; is
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multiplied by a common nonzero constant. Also, if f is differentiable,
then the Lipschitz constant is L = Ilf'll 0).

Remarks 2.2. (1) The argument used in the proof can be adapted to
the case where the functions Ii are just continuous (one uses the fact that
condition (2.1 )(ii) on /1 implies IJI -+ 0 as /1(1) -+ 0 uniformly for all sub­
intervals J of I). But the result is not as clean and, since it is not needed
for polynomials, we will not give any detail.

(2) If the average f is not zero, the result has to be modified as
follows: there is an averaging set for f with n points whenever

III /1(/) Ilf - fll xL
n> 2A '

where A is computed from the modified Gram matrix

(II U; - !J(jj - 1;) dfl ) ..
l,j

(assuming that 11' ... ,fm and the constant 1 are linearly independent).

(3) (Symmetry) Since the whole situation is invariant under a linear
change of variable, we may assume without loss of generality that we are
working on the interval [-1, 1]. Let us assume for simplicity that the
measure /1 is given by a weight function w(x). If w(x) is even and if the even
and odd parts of any function in V also belong to V (i.e., V can be decom­
posed into a direct sum V = V+ EB V" with V+ (resp. V-) consisting
entirely of even (resp. odd) functions), then it is natural to consider
averaging sets which are symmetric with respect to the origin. Such
averaging sets integrate correctly all odd functions. So the problem is
reduced to finding symmetric averaging sets for the functions in V+, for
which it is equivalent to work on the interval [0, 1], by symmetry. When
dim V+ < dim V, this already gives an improvement of the bound No. As
we will see in Section 3, for polynomials this can be further improved
the change of variables t = x 2

, X E [0, 1], as explained in the next remark.

(4) (Change of variable) For simplicity, let us assume that f is
differentiable and that the measure fl is given by a weightfunction w(x). If
we perform the change of variables x = cp(8), where cp i.s a differentiable
monotone function from an interval J onto I, the measure dfl(x) = w(x) dx
is replaced by dj1(e) = w(cp(e))cp'(O) de and (2.4) becomes

1 1 n-_- I (f 0 cp) dj1 = - L f(cp(8J).
/1(J) J n i~1
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In the bound given by Theorem 2.1 one has to replace f by f 0 cp and fl by
[1. The quantities corresponding to fl(I), 2, and Ilfll oo remain unchanged; III
is replaced by IJI and L= Ilf'lloo by II(focp),lloo, so that No becomes

IJI fl(I) Ilfll 00 II (f 0 cp)'ll 00
22

If one can choose cp so that IJI· II (f 0 cp)' 1100 is substantially smaller than
III . II fli 00' as we can for polynomials (see Sect. 3), this results in a better
bound for the minimum size of a fl-averaging set.

(5) If one makes a change of basis in V by means of a nonsingular
matrix A and the basis f = Ul, ...,fm) of V is sent to A f, the following
estimate holds,

where cond(A) = IIAII ·IIA -111 is the condition number of the matrix A.

One would like to choose a basis f of V that minimizes No(f). The
estimate in Remark (5) is not helpful in that respect, because the condition
number of a matrix is never less than 1. If, however, the functions fl, ..., fm
are orthogonal with respect to the inner product (2.2) on V, it is easily
checked that No(f) is decreased if each J; is multiplied by a scalar so that
all the fi have the same L 2-norm. Since multiplying all the J;
simultaneously by a common nonzero scalar does not change No(f), we
may as well assume in that case that Ul, ..., fm) is an orthonormal basis
for V.

When doing specific computations in the next section, we will choose f
to be an orthonormal basis for V, which gives 2 = 1. The space V will con­
sist of differentiable functions (actually polynomials). To make the com­
putation easier, we will overestimate Ilfll oo by the more easily computed
quantity J"L'J:= 1 II fk II ~ , and similarly for the Lipschitz constant

L= Ilf'IIoo. Note that Ilfll oo =J"L'J:=1 Ilfkll~ if the maxima of the fk all
occur at the same point of I, which is often the case for orthogonal polyno­
mials. If we combine this with Remark 2.2(4) about changes of variable, we
get:

COROLLARY 2.3. Suppose V consists of differentiable functions (all of
waverage zero). Let Ul' ..., fm) be an orthonormal basis for V and let
cp: J -+ I be a change of variable as in Remark 2.2(4). Then there exists a
fl-averaging set for V of size n for every integer n > N 1 with

1
N 1 ="2 IJI fl(I)

m

I II Uk 0 cp )' II ~ .
k~1
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3. JACOBI WEIGHT FUNCTIONS
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In this section we look at averaging sets of degree p with respect to the
Jacobi measure dl1(x) = (1 - x)'" (1 + x)/i dx (rx, 13 > -1) on the interval
[ -1, 1]. Let N(p) denote the minimum size of such an averaging set of
degree p, and write p = max(rx, 13).

The following lower bounds for N(p) are known,

and
1P < N(p) (3.1 )

C
j

pZp+z ~ N(p) if p ~ -1/2, (3.2)

where C j is a constant depending on rx, 13 and independent of p. Formula
(3.1) is a standard fact, valid for any kind of quadrature formula; (3.2) is
proved in [5].

THEOREM 3.1. With the notation above, we have

N(p) ~ Czpz

N(p) ~ CZpZP+3

if p < -1/2;

if p ~ -1/2.

Here Cz is a constant depending on rx, 13 and independent of p. If p ~ -1/2,
one can take "asymptotically" (as p ---+ (0)

C =::: r( rx + 1) r(f3 + 1) 1
z 2 [r(p + 1)] Z r( rx + 13 + 2) J (p + 1)(p + 2) .

The word "asymptotically" in the theorem means

. N(p)
hm sup Zp+3 ~ C z·
p~ 00 p

Based on the case of Chebyshev polynomials (p = -1/2, N(p) ~ p/2), it is
most likely that the exponent 2p + 3 is not the best possible in general.
(For that reason, there is no point in doing the computation for Cz mbre
precisely than asymptotically.) One may guess that the best exponent is in
fact given by the lower bound:

Conjecture 3.2. N(p) = O(pZP + 2) when p ~ -1/2.

Remark 3.3. In the special case rx ~ -1/2 and f3 = -1/2, we have

n2Z~

Cz = -----;=====
r( 2rx + 2) J (rx + 1)(rx + 2)

(use the duplication formula for the gamma function).



208 RABAU AND BAJNOK

Proof of Theorem 3.1. We will use Corollary 2.3, taking fk (k = 1, ..., p)
to be orthogonal polynomials with respect to the Jacobi weight w(x) =
(l-x)a (1 +x)fJ, with each fk normalized to have L 2-norm equal to 1.
We also use the change of variable x = <p(8) = cos 8, 8 E J = [0, n],
XE!= [-1,1]. SO IJI =n and

_f1 _2a+ fJ +1T(a+l)T({3+1)
/1(1) - w(x) dx - ({3 2) .

-1 T a+ +

We have fk=a;;1/2Pia,fJ) where pia,fJ) is the Jacobi polynomial of degree k
as in [12] and

ak = f
1

[Pia,fJJ(X)]2 w(x)dx

2a+ fJ + 1T(k + a + 1) T(k + {3 + 1)___--'- --'---'--'-----'- '" 2a + fJk- 1

(2k+a+ {3 + l)k! T(k+a + {3+ 1) .

First assume that p ~ -1/2. Then

(a,fJ) _ (k + P) '" k
P

II P k II 00 - k T(p + 1) ,

which implies

p p

L Ilfkll;, = L a;;l IIPia,fJ)ll;,
k~l k~l

pp+1

To estimate II Uk 0 <p)' 1100, we use an inequality of Bernstein (see, for
example, [4]) which asserts that

max I: (P(cos 8))I:(k max IP(x)1
o~e~" uu Ixl~l

for every polynomial P of degree k. This gives
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p p

L II(fk°qJ),II~:( L k 2a;1 IIPi~,P)II~
k~l k~l

pp+2
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Substituting the various estimates above in Corollary 2.3 yields "asymptoti­
cally"

n r( a + 1) r(fJ + 1) 1 2p + 3

N(p):(2" [r(y + I)J2 r(a+ fJ + 2) J(p + l)(p + 2) P .

In the case p< -1/2, we can only claim IIPi~,P)llec=O(k-1/2), which
gives, by a similar computation, N(p) = O(p2). I

Assume we are now in the ultraspherical case with a = fJ > -1/2. By
(3.2) and Theorem 3.1 we know that

Costabile [5] gives an explicit expression for a constant C1 in terms of
gamma and Bessel functions. For the upper bound, the constant C2 in
Theorem 3.1 can be replaced by !C2 , as proved below using the symmetry
of the weight function w(x) = (1 - x 2

)".

PROPOSITION 3.4. Keeping the notation of Theorem 3.1, let a = fJ > -1/2.
Asymptotically (as p -+ 00), we have

N(p):( C;p2H3

with

I n 1
C2 =- ----r=====

4 r(2a+2)J(a+ 1)(a+2)

Proof Use the ideas in Remark 2.2(3), which are applicable since
w(x)= (1_x 2 )a is even. If we look for symmetric averaging sets, it is
enough to look for averaging sets with respect to (1 - x 2 )a dx on [0, 1]
that integrate correctly all even polynomials of degree at most p. By the
change of variable x = t 1/2, t E [0, 1], the problem is changed into

640,/67/2-7
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integrating arbitrary polynomials of degree not exceeding p/2 with respect
to the measure !(l- t)<x t- 1/2 dt, which, by a linear change of variable, is
equivalent to the Jacobi weight (1 - x)'" (1 + x) -112 on [ -1, 1]. So, in the
constant C2 of Theorem 3.1, take p = IX, f3 = -1/2, and replace p by p/2,
not forgetting to multiply the whole quantity by 2 to take the negative
half of [ -1,1] into account. From Remark 3.3 we get (asymptotically)
N(p) ~ C; p2<x + 3 with C; as claimed. I

Remark 3.5. The case w(x) = 1 (that is, IX = f3 = 0) is worth mentioning
explicity,

1 2 n 3

16 P < N(p) ~ 4 J2 p ,

where the second inequality is only asymptotic (p -+ (0). The first
inequality was proved by Bernstein [3] in the form p < 4 fl.

4. AVERAGING SETS ON THE SPHERE

In this section, we investigate averaging sets of degree p on the
d-dimensional unit sphere Sd= {x= (xa, ..., Xd)ER d+1 Ix~+ ... +x~= I},
i.e., finite subsets X of Sd such that

(4.1 )

for all polynomials f(x) = f(xa, ..., x d) of (total) degree at most p. Here ad
is the surface measure on Sd.

Delsarte et al. [6] give a lower bound for the size of an averaging set X
of degree p on Sd:

IXI ::?; (d + LP/2J) (d + Lp/2J - 1)
:?" Lp/2J + Lp/2J ,

1 d

~ 2dd! P as p -+ 00.

THEOREM 4.1. Let Nd(p) denote the minimum size of an averaging set of
degree p on Sd, There is a positive constant C(d) independent of p such that

NAp) ~ C(d) pd2/2+3dI2-1.
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Asymptotically (as p ~ 00) one can take

(
n)d-l J 6 d 1

C(d) = "2 (d+ l)(d+ 2) ,I)J!'
Remark 4.2. For the usual sphere S2, this gives asymptotically

n 4
N 2(p):(; h P .

4 y 2
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Our method is recursive and based on the simple fact that, for integra­
tion purposes, the sphere Sd is equivalent to the product of the "equator"
Sd-l and of the interval [-1, 1] with a suitable ultraspherical weight
function. (Separation of variables occurs when integrating monomials.)
Thus one can obtain an averaging set of degree p on Sd by taking suitably
spaced (d - 1)-dimensional sections of Sd parallel to the equator Sd -1, and
putting an averaging set of degree p on each section.

Before stating the precise result, let us introduce some notation. For
x = (xo, ..., Xd) E Sd, let x = (xo, ..., Xd-l) and, for simplicity of notation,

write Xd= tE [-1,1]. We havex=~ y for some YESd- 1
, so that

x=(~y,t).

THEOREM 4.3. Let Y ~ Sd-l be an averaging set of degree p, and let
T ~ ( - 1, 1) be an averaging set of degree p on [ - 1, 1] with respect to the
measure (1- t2)(d-2)/2 dt. Then

x={(~ y, t) lyE Y, tE T}

is an averaging set of degree p on Sd.

Proof We will use multi-index notation: ifa=(ao, ...,ad) is a (d+l)­
tuple of nonnegative integers, write X~ = x~o ... X~d; also, let lal =
Q(o+ ... +ad, &=(ao,··.,ad-d, and 1&I=ao+ ... +ad- 1·

By the linearity of the problem, it is enough to verify (4.1) for all the
monomials f(x) = X~ with lal :(; p. We have

and

The integral in (4.1) becomes

(
1 d-l f yad<Td_1(y))(Kf

l
(1_t2)lal/2t~d(1-t2)(d-2)/2dt),

O"d_l(S ) Sd-l -1

(4.2)



212 RABAU AND BAJNOK

(4.3 )

where K is a constant chosen to normalize the measure. Since
IXI = IYI·ITI, the sum in (4.1) becomes

( _1 L y&)(_1 L (1- t2)1&1/2 tad).
IYI YEY ITI fET

By definition of averaging set, the factors of (4.2) and (4.3) involving y
coincide whenever lal ~ p. If lal is odd, then these factors are zero and
(4.2) = (4.3). If IaI is even, then (1 - t2)1&1/2 tad is a polynomial in t of degree
at most p, so that the factors of (4.2) and (4.3) involving t also coincide,
and hence (4.2) = (4.3). So X is an averaging set of degree p on Sd. I

Proof of Theorem 4.1. We apply the recursive procedure of
Theorem 4.3. To start the induction, we use the well-known fact that a
regular polygon with p + 1 vertices is an averaging set (of minimum size)
of degree p on the circle S 1. Let N(i)(p) denote the minimum size of an
averaging set of degree p on [- 1, 1] with respect to the ultraspherical
measure (1 - t2 )(i - 2)/2 dt. A repeated application of Theorem 4.3 shows that
the minimum size NAp) of an averaging set of degree p on Sd satisfies

d

NAp)~(p+ 1) n N(i)(p).
i~2

By Proposition 3.4, we have

where asymptotically (as p ---+ 00) one can take

(4.4 )

(4.5)

A short computation gives the result of the theorem after combining (4.4)
and (4.5). I

Note that our method depends crucially on the ability to find averaging
sets on [-1, 1] with respect to ultraspherical weight functions. Any
improvement in the estimates for averaging sets on intervals will automati­
cally yield an improvement for the sphere. On the basis of Conjecture 3.2,
we can make a corresponding conjecture for the sphere:

Conjecture 4.4. The minimum size of an averaging set of degree p on
Sd is O(pd(d+ 1)/2) as p ---+ 00.

We conclude the section by examining a quantity related to NAp). It is
a special case of a result of [9] that every sufficiently large integer can
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occur as the size of an averaging set of degree p on Sd The next result gives
an estimate for the smallest integer NAp) such that for every n ?;:; NAp)
there exists an averaging set of degree p on Sd having size n. The upper
bound we give for Nd(P) has the same order of magnitude as the upper
bound for NAp) in Theorem 4.1.

PROPOSITION 4.5. With the notation above, Nd(p) = O(pd
2
/2 + 3d/2 - l) as

p --? co.

The following lemma is not sharp, but is sufficient for our purposes.

LEMMA 4.6. Let r be a positive integer and let a l , ... , ar be real numbers
not smaller than 6. Then every integer n?;:; sr- lal ... ar can be expressed as
a sum of 2r

- 1 terms, each term being a product of the form n l n2··· nr

integers n;?;:;a; (i= 1, ... , r).

Proof The case r = 1 is clear. For r = 2, assume a l ::( a2. Since a l ?;:; 6,
there exist two distinct primes p, q between a l and 2a l [10, Th. 7, p. 144].
Since p and q are relatively prime, any integer n can be written in the form
n = px + qy for some integers x, y. We want to determine a condition on
n such that both x and y can be taken ?;:;a2. The number x can be adjusted
so that a2::( x::( a2+ q. Then y?;:; a2 as soon as

Since

n ?;:; p(a 2 + q) + qa2 .

p(a2+ q) + qa2::( 2a l(a2+ 2ad + 2al a2

= 4a l a2 + 4ai::( 8a l a2 ,

(4.6)

(4.6) will hold if n ?;:; Sa 1 a2 •

The general case follows by induction. For simplicity we just show the
case r=3. Suppose n?;:;82ala2a3=S(Sala2)a3' By the case r=2, n can be
written as a sum of 2 terms, each of the form mn3 with m?;:; Sal a2 and
n3?;:; a3. Each m in turn can be written as the sum of 2 terms, each of the
form n ln2 with nl?;:;a l , n2?;:;a2. By distributivity we obtain a sum of
4 terms of the required form. I

Proof of Proposition 4.5. If we take a closer look at the proof of (4.5),
using Theorem 2.1 and the fact that a regular polygon with n l vertices is an
averaging set of degree p on the circle S 1 whenever nl ?;:; p + 1, we see that
there exist averaging sets of degree p on Sd of size n 1n2 ... nd for any choice
of integers nl ?;:; P + 1 and n;?;:; Cipi+ 1 (i = 2, ... , d), where the C i are
constants independent of p. Since a disjoint union of averaging sets is an
averaging set and one can always slightly rotate averaging sets on the
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sphere to avoid a finite set of points, Lemma 4.6 implies the existence of an
averaging set of degree p on Sd of size n for all n ~ Cp n1=2 pi+ I =
Cp d

2
/2 + 3d/2 - I, where C is independent of p. I
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